What is an Isoceles Triangle? - Geometry Made Easy
Welcome to Quatr.us Study Guides!

Isoceles Triangles

Isoceles Triangle
Isoceles Triangle

November 2016 - Isoceles triangles have at least two sides that are exactly the same length. This forces two of their angles to also be acute angles of exactly the same size. In this blue triangle, the two longer sides are the same length, which forces the two bottom angles to be the same size. If the third side is also the same length as the first two sides, then the triangle is an equilateral triangle. All equilateral triangles have to be isoceles (eye-SAH-suh-leez) triangles, but not all isoceles triangles are equilateral.

Isoceles triangles, like other triangles, have a perimeter and an area. You can find out the perimeter of an isoceles triangle by adding together the length of all three sides. It's harder to find out the area.

Area of an isoceles triangle

To find the area of an isoceles triangle, start by drawing a line down the middle, from the top point to the middle of the bottom side. You'll notice that an isoceles triangle has bilateral symmetry - that will be useful. Now you have two smaller triangles, but they're exactly the same size, each half the area of the original triangle.

The line you drew down the middle is perpendicular to the bottom side of the triangle, so those two lines meet at right angles, forming two right triangles that are the same size. Because each of these right triangles makes half of a rectangle, you can imagine moving one of them, turning it upside down, and putting it against the other one to make a rectangle. Now it is easy to find the area of that rectangle if you know the height of the isoceles triangle and how wide the bottom is.

But suppose you only know the lengths of the three sides, and not how long the center line is? No problem. You can calculate the height of the center line using the Pythagorean Theorem, because half of an isoceles triangle is a right triangle.

More about Triangles
More about Geometry

Bibliography and further reading about geometry:

More about Geometry
More Easy Math
Quatr.us home


LIMITED TIME OFFER FOR TEACHERS: Using this article with your class? Show us your class page where you're using this article, and we'll send you a free subscription so all your students can use Quatr.us Study Guides with no distractions! (Not a teacher? Paid subscriptions are also available for just $16/year!)
Please help other teachers and students find us: link to this page from your class page.
Karen Carr is Associate Professor Emerita, Department of History, Portland State University. She holds a doctorate in Classical Art and Archaeology from the University of Michigan. Follow her on Instagram or Twitter, or buy her book, Vandals to Visigoths.
Cite this page
  • Author: K.E. Carr
  • Title:
  • Site Name: Quatr.us Study Guides
  • Publisher: Quatr.us
  • Date Published:
Did you find what you needed? Ask your teacher to link to this page so other people can use it too! Send it in and win a Quatr.us "Great Page!" award!
Sign up for more free articles and special offers in Quatr.us' weekly newsletter:
We will never share your e-mail address unless you allow us to do so. View our privacy policy. Easy unsubscribe links are provided in every email.
Comment on This Article

Does your class page honor diversity, celebrate feminism, and support people of color, LBGTQ people, and people with disabilities? Let us know, and we'll send you a Diversity Banner you can proudly display!
Looking for more?
Quatr.us is loading comments...
(Comments will appear after moderation, if they are kind and helpful. Feel free to ask questions, and we'll try to answer them.)
Cite this page
  • Carr, K.E. . Quatr.us Study Guides, . Web. 24 April, 2017
ADVERTISEMENT